Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Journal Article

Demonstration of a Compact Hydrogen Fuel Cell Power System for UAS Propulsion

2014-09-16
2014-01-2223
We have assembled and demonstrated a prototype power system that uses an innovative hydrogen generator to fuel an ultra-compact PEM fuel cell that is suitable for use in small unmanned aerial system (UAS) propulsion systems. The hydrogen generator uses thermal decomposition of ammonia borane (AB) to produce hydrogen from a very compact and lightweight package. An array of AB fuel pellets inside a low pressure container is activated sequentially to produce hydrogen on demand as it is consumed by the fuel cell. The fuel cell plant utilized in the power system prototype has been flown as part of several small UAS development programs and has logged hundreds of hours of flight time. The plant was designed specifically to be readily integrated with a range of hydrogen fueling subsystems and contains the balance of plant necessary to facilitate stand-alone operation. Based on results of these tests, we produced a conceptual design for a flight system.
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

2013-09-17
2013-01-2301
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Journal Article

Propulsion of Photovoltaic Cruiser-Feeder Airships Dimensioning by Constructal Design for Efficiency Method

2013-09-17
2013-01-2303
The European project MAAT (Multi-body Advanced Airship for Transport) is producing the design of a transportation system for transport of people and goods, based on the cruiser feeder concept. This project defined novel airship concepts capable of handling safer than in the past hydrogen as a buoyant gas. In particular, it has explored novel variable shape airship concepts, which presents also intrinsic energetic advantages. It has recently conduced to the definition of an innovative design method based on the constructal principle, which applies to large transport vehicles and allows performing an effective energetic optimization and an effective optimization for the specific mission.
Journal Article

Development of an Aerodynamic Analysis Methodology for Tractor-Trailer Class Heavy Commercial Vehicles

2013-09-24
2013-01-2413
An aerodynamic analysis methodology which makes efficient use of ANSA and FLUENT software's in the aerodynamic design of tractor-trailer class heavy commercial road vehicles is presented. The aerodynamic drag coefficient of the truck is used as the main control parameter to evaluate the performance of the methodology. Analysis methodology development activities include determining optimal FLUENT software analysis parameters for the defined problem (RANS based turbulence models, wall boundary layer models, solution schemes) and the necessary ANSA mesh generation parameters (boundary layer number and growth rate, wall surface mesh resolution, total mesh resolution). Proposed methodology is first constructed based on CFD simulations for the zero-degree yaw angle case of the 1/8 sized GCM geometry. The present results are within 1% of the experimental data.
Technical Paper

Research on Locked Wheel Protection Function of Aircraft Brake System

2021-10-11
2021-01-1269
Locked wheel protection is an important part of antiskid control for aircraft brake control system. Locked wheel protection compares the wheel speed of two or more wheels, if one of the wheels is too slow, locked wheel protection releases the brake pressure on the slow wheel. This work aims to study the control logic for locked wheel protection. Locked wheel protection control logic consists of 3 key factors: paired wheels, active threshold and inhibit velocity. Focus on comparison different options of these 3 factors, all aspects of control logic for locked wheel protection had been expounded in this study. Simulation and calculation analysis is applied for different locked wheel strategies to evaluate the effect. One conclusion is that the greatest wheel speed of the wheel under control shall be set as a reference speed for locked wheel protection. This study provide the basis to design a proper locked wheel protection function of aircraft brake control system.
Technical Paper

Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition

2020-09-15
2020-01-2036
Direct injection (DI) and jet ignition (JI), plus assisted turbocharging, have been demonstrated to deliver high efficiency, high power density positive ignition (PI) internal combustion engines (ICEs) with gasoline. Peak efficiency above 50% and power density of 340 kW/liter at the 15,000 rpm revolution limiter working overall λ=1.45 have been report-ed. Here we explore the further improvement in power density that may be obtained by replacing gasoline with ethanol or methanol, thanks to the higher octane number and the larger latent heat of vaporization, which translates in an increased resistance to knock, and permits to have larger compression ratios. Results of simulations are proposed for a numerical engine that uses rotary valves rather than poppet valves, while also using mechanical, rather than electric, assisted turbocharging. While with gasoline, the power density is 410-420 kW/liter, the use of oxygenates permits to achieve up to 475 kW/liter working with methanol.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Journal Article

A Methodology for Collision Prediction and Alert Generation in Airport Environment

2016-09-20
2016-01-1976
Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
Technical Paper

Use of Butanol Blend Fuels on Diesel Engines - Effects on Combustion and Emissions

2020-04-14
2020-01-0333
Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. Like ethanol, butanol can be produced as a biomass-based renewable fuel or from fossil sources. In the research project, DiBut (Diesel and butanol) addition of butanol to Diesel fuel was investigated from the points of view of engine combustion and of influences on exhaust aftertreatment systems and emissions. One investigated engine (E1) was with emission class “EU Stage 3A” for construction machines, another one, engine (E2) was HD Euro VI. The most important findings are: with higher butanol content, there is a lower heat value of the fuel and there is lower torque at full load.
Standard

Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans

2016-10-21
CURRENT
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
Standard

Rotorcraft: Application of Existing Aircraft Designed Tires, Wheels and Brakes

2021-04-23
CURRENT
ARP5632
This document covers recommendations for the application of existing qualified and approved in-service fixed wing aircraft tires, wheels and brakes to military and commercial rotorcraft. NOTE: This document does not address the use of radial tires due to insufficient data to support their approved use on rotorcraft, see paragraph 4.3.14 for specific impact on ground resonance.
X